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Abstract

An analytical solution for a two-dimensional boundary-value problem that models the transfer of heat to the workpiece during an
intermittent grinding process has been previously constructed. In this solution, two variable functions in the boundary condition of
the problem described the interrelation between the grinding wheel, the workpiece and the grinding fluid. In this paper, a numerical algo-
rithm is developed. This algorithm allows one to study the effect on the workpiece temperature of varying either the velocity of the work-
piece and/or the cycle-times related parameters. Our objective is to determine the values of the appropriate parameters so that the
amount of material removed is maximized and the amount of coolant required is minimized.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A major problem in grinding is controlling the heat
transferred to the workpiece. Part of the energy used in
removing stock converts into heat. This effect slows down
the grinding process and may cause some thermal damage
to the workpiece, such as deformations. The use of grind-
ing fluids helps preventing this thermal damage. They
reduce the amount of heat produced at the grinding zone
and lubricate the area, thus reducing the friction between
the wheel and the workpiece. However, it is well known
that these fluids may frequently have a harmful influence
on the environment. Therefore, it is of a considerable
industrial interest to design devices or improve the process
so that the amount of heat transferred to the workpiece is
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reduced. Currently, it is a common practice to introduce
intermittent grinding sequences, either using a slotted
wheel or by direct actuation on the workpiece [1,2].

In a previous paper [3], a model and an analytical
expression for the evolution of the workpiece temperature
field in intermittent grinding was provided. This paper pre-
sents an algorithm that allows one to simulate how the
workpiece heats during an intermittent grinding process.
This model used a boundary-value problem with variable
boundary data instead of the classical coupled system of
PDEs, see [5–8], which usually receive numerical treatment
because of the natural difficulty of finding exact solutions
[4,9]. By applying the Green’s function method and the
convolution theorem for the Laplace transform an explicit
solution of the problem in integral form was achieved [3].
The solution was provided in terms of the parameters of
the model, thus making it possible to construct an algo-
rithm directly based on it.

The organization of this paper is as follows. In the sec-
ond section a brief description of the model is provided.
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The same procedure as in Ref. [3] is used to obtain an expli-
cit closed form solution. The third section is a description
of the numerical algorithm based on this explicit solution.
The composite Simpson’s rule is used to approximate the
definite integrals and the truncation arguments are physi-
cally justified by appealing to the decreasing order of the
exponential integrands. The convergence of the algorithm
is also shown. The fourth section includes a parametric
study of the process, varying the velocity of the workpiece
and the duration time of a cycle which includes the contact
of the grinding wheel with the workpiece, the cooling of the
workpiece surface by interaction with a grinding fluid and
the transit of a gap between the wheel and the workpiece
along the band of contact. As an example, optimal values
of the parameters are given for the particular case of a tita-
nium alloy VT20 workpiece [10] being grounded by an
intermittent grinding wheel.
2. Numerical method formulae

In Ref. [3], the physical configuration and the coordi-
nate system depicted in Fig. 1 was assumed for a typical
grinding wheel and a workpiece moving in the same direc-
tion. The region over which the grinding wheel contacts the
workpiece surface is of length d.

The two-dimensional boundary-value problem

otT ðt; x; yÞ ¼ aðoxxT ðt; x; yÞ þ oyyT ðt; x; yÞÞ � vdoxT ðt; x; yÞ;
koyT ðt; x; 0Þ ¼ bðt; xÞðT ðt; x; 0Þ � T1Þ þ dðt; xÞ; t P 0;

T ð0; x; yÞ ¼ T 0;�1 < x <1; y P 0;

9>=
>;
ð1Þ

with variable functions bðt; xÞ and dðt; xÞ in the boundary
condition on the surface y ¼ 0 of the workpiece was used
to model the workpiece temperature field during the grind-
ing process mathematically. Considering the change of
variables T ðt; x; yÞ ¼ T ðt; x; yÞ � T 0 and assuming that
T 0 ¼ T1, the PDE problem (1) was posed as
Fig. 1. Grinding setting.
otT ðt; x; yÞ ¼ aðoxxT ðt; x; yÞ þ oyyT ðt; x; yÞÞ � vdoxT ðt; x; yÞ;
koyT ðt; x; 0Þ ¼ bðt; xÞT ðt; x; 0Þ þ dðt; xÞ;

�1 < x <1; t P 0;

T ð0; x; yÞ ¼ 0; �1 < x <1; y P 0;

9>>>=
>>>;
ð2Þ

and the following explicit solution of (2) in integral form
was obtained by applying the Green’s function method
[12] and the convolution theorem for the Laplace trans-
form [13]:

T ðt;x;yÞ¼ 1

4p

Z t

0

Z þ1

�1
s�1e�

ðx0�x�vd sÞ2þy2

4as

�

� y
2as
�bðt�s;x0Þ

k

� �
T ðt�s;x0;0Þ�dðt�s;x0Þ

k

� �� �
dx0
�

ds;

ð3Þ

For an intermittent dress grinding process [11], the interac-
tion between the grinding wheel and the workpiece is cyclic.
In this case the local heat transfer coefficient bðt; xÞ and the
surface heat flux dðt; xÞ were given in [3] in terms of the
Heaviside step function H [12]

bðt; xÞ ¼ aHð�xÞ þ aHðx� dÞ þ asHðd� xÞHðxÞfsðtÞ
þaHðd� xÞHðxÞfeðtÞ;

fsðtÞ ¼
P1
n¼0

Hðntc þ tp þ ts � tÞHðt � ntc � tpÞ;

feðtÞ ¼
P1
n¼0

Hððnþ 1Þtc � tÞHðt � ntc � tp � tsÞ;

9>>>>>>>=
>>>>>>>;
ð4Þ

and

dðt; xÞ ¼ �qHðd� xÞHðxÞfpðtÞ;

fpðtÞ ¼
P1
n¼0

Hðntc þ tp � tÞHðt � ntcÞ:

9=
; ð5Þ

In these equations, tp is the length of the time interval dur-
ing which contact between the grinding wheel and the
workpiece occurs within the nth cycle, ts is the time during
which contact between the workpiece and the grinding fluid
takes place in a cycle n and tc is the duration time of the
nth cycle. This includes the contact of the grinding wheel
with the workpiece, the cooling of the workpiece surface
by interaction with a grinding fluid and the absence of
contact along the grinding zone of length d. In our approx-
imation we suppose that the heat flux due to friction q

depends linearly on the workpiece velocity vd , that is,
q ¼ kvd ; where k is obtained experimentally [14]. The func-
tion fp describes the contact time between the grinding
wheel and the workpiece during the whole process, fs

describes the interaction times between the grinding fluid
and the workpiece during the whole process and fe

describes the time period in each cycle when there is no
contact. The effective coefficients a and as regulate the
cooling of the workpiece due to the transfer of heat to
the environment and to the grinding fluid respectively.
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Finally, taking into account expressions (4) and (5), the
explicit solution in (3) was re-written [3] in recurrent form
in terms of the Euler error function as

T ð1Þðt; x; yÞ ¼ T ð0Þðt; x; yÞ þ 1

4p

Z t

0

Z þ1

�1
s�1e�

ðx0�x�vd sÞ2þy2

4as

�

� y
2as
� k�1bðt � s; x0Þ

� �
T ð0Þðt � s; x0; 0Þdx0

i
ds;

ð6Þ

where

T ð0Þðt; x; yÞ ¼ q
4k

ffiffiffi
a
p

r Z t

0

s�1=2fpðt � sÞe�
y2

4as

� erf
d� x� vds

2
ffiffiffiffiffi
as
p

� �
þ erf

xþ vds
2
ffiffiffiffiffi
as
p

� �� �
ds;

ð7Þ

is the temperature that the metal workpiece can reach in
absence of grinding fluid.
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Fig. 2. Relative error of T ð0Þ. Note that it is only necessary to use 80 points
to reach a 0.1% of relative error compared to the maximum resolution
possible in a computer, T m, with m ¼ 10000 points.
3. Numerical algorithm

Each evaluation of T ð1Þ in Eq. (6) requires the computa-
tion of a large number of T ð0Þ terms, as defined in Eq. (7).
Therefore, in order to compute T ð1Þ in a reasonable time for
engineering purposes, a very quick integration algorithm is
needed.

For the sake of simplicity and to avoid unnecessary
delays in the computation of the integrals (6) and (7) the
composite Simpson’s rule is used taking two different
subschemas.

First of all, it is essential to find a quick algorithm to
compute T ð0Þ. If we are interested in the evolution of the
workpiece temperature during a time period of length
tend, then the time interval is partitioned into n1 þ 1 equidis-
tant nodes, 0 ¼ s0; s1; . . . ; sn1

¼ tend. In order to simplify the
notation we adopt the values x ¼ 0 and y ¼ 0 and the
equivalence

T ðtÞ ¼ T ð0Þðt; 0; 0Þ: ð8Þ

Taking (7) into account, the integral

T ðs1Þ ¼
q

4k

ffiffiffi
a
p

r Z s1

0

s�1=2fpðs1 � sÞ

� erf
d� vds
2
ffiffiffiffiffi
as
p

� �
þ erf

vds
2
ffiffiffiffiffi
as
p

� �� �
ds; ð9Þ

is initially computed. The integrand in the definite integral
of (9) has to be tabulated at

0 ¼ s0 ¼ s0
0; . . . ; sm

0 ¼ s1; ð10Þ

mþ 1 equally spaced points by distance h ¼ s1 � s0, for m

even. In order to evaluate T ðs2Þ the integrand in integral
(9) has to be tabulated at the 2mþ 1 equally spaced points

s0 ¼ s0
0; . . . ; sm

0 ¼ s1 ¼ s0
1; s

1
1; . . . ; sm

1 ¼ s2; ð11Þ
and we can use the values computed for the previous inte-
gral. Applying this scheme iteratively, the last integral is
obtained using N ¼ m � n1 þ 1 points, but with a computa-
tional cost similar to the one required for the first integral.
This is because 95% of the computation time is devoted to
the evaluation of the integrands.

The implementation of the method described is straight-
forward since the integrand in expression (9) is of the form

Gðt; sÞ ¼ Lðt � sÞ �MðsÞ: ð12Þ
Taking the evaluation of function (12) at any sj,
j ¼ 0; . . . ; n1, equally spaced nodes by distance h, each cor-
responding integral in (9) is approximated by

T ðsjÞ ¼
Z sj

0

Gðt; sÞds ¼ h
3

Xj�ðmþ1Þ

i¼1

CjLN�jðmþ1Þþi �Mi; ð13Þ

where Cj ¼ ð1; 4; 2; . . . ; 2; 4; 1Þ is the coefficient vector for
the composite Simpson’s rule.

The last step in the algorithm is the approximation of
T ð1Þ, given by (6). In order to do this, it is necessary to
approximate the value of T ð0Þ, given by (7), at points
ðt � s; x0; 0Þ at the workpiece surface. Then, we refine the
mesh to compute these values by (9) and the improper inte-
gral in (6) is truncated to an interval where the exponential
factor

/ðs; x0Þ ¼ s�1e�
ðx0�x�vd sÞ2þy2

4as ; ð14Þ
of the integrand is always greater than 1e� 16.

Moreover, the right endpoint of this interval is always
lower than d, due to the fact that T ð0Þðt; x; yÞ ¼ 0 if x > d
for all t and y. Once we have obtained the interval, the
value of T ð0Þðt � s; x0Þ is approximated in the second mesh
through a three-point interpolation from the values of
T ð0Þ in the first mesh. Knowing T ð0Þ, the second integral is
also computed using (13).
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Fig. 3. Relative error of T ð1Þ, for ts ¼ 0 (a) and ts ¼ 1e� 4 (b). The relative error is slightly larger in (b).
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Finally, we have performed several studies about the
convergence of the method. In Fig. 2 we have plotted the
convergence results obtained for T ð0Þ in L2 and L1 norms,
and the same in Fig. 3 for T ð1Þ in the cases of ts ¼
0 and ts ¼ 1e� 4s. These results are very satisfactory, since
they show that with a very small number of points, we
obtain 4–5 digits of precision, more than needed in a usual
grinding process.

4. Numerical results

The numerical algorithm has been implemented in
MATLAB. The algorithm allows one to simulate the evo-
lution of the workpiece temperature field at every point
ðx; yÞ from the rest state until a cyclic regime is reached.
The results obtained with the implementation are presented
in this section. All the codes used in these simulations are
Table 1
Nomenclature

Nomenclature

a Thermal diffusivity
coefficient (m2 s�1)

t Process time (s)

fe Process noncontacts
function

tc nth cycle duration time (s)

fp Grinding wheel-workpiece
process contacts function

ts nth cycle refrigerant
application duration time (s)

fs Refrigerant-workpiece
surface process interaction
function

vd Workpiece speed (m s�1)

n Cycles index ðx; yÞ Position components (m, m)
q Thermal flux (W m�2) a Workpiece-environment heat

transfer coefficient
(J m�2 K�1 s�1)

T Workpiece temperature
(�C)

as Workpiece-refrigerant heat
transfer coefficient
(J m�2 K�1 s�1)

T 0 Inlet temperature (�C) d Grinding zone length (m)
T1 Ambient temperature (�C) k Thermal conductivity

(W m�1 K�1)
open to the scientific community through a GNU-GPL
license. (see Table 1)

The set of parameters that have been used for all further
simulations appears in Table 2. These data values have
been extracted from Ref. [14] and correspond to an inter-
mittent grinding process of a VT20 titanium alloy metal
workpiece.

The effect over the temperature T ð0Þ given by (7) when
increasing the workpiece velocity of motion vd is studied.
It is assumed that the heat flux q depends linearly on vd ,
see [15]. In Table 3 are given the values of vd and q used
in these simulations.

Fig. 4 shows how the temperature T ð0Þ at the rear edge of
the grinding zone (position ðx; yÞ ¼ ð0; 0Þ) varies when the
velocity is increased. For higher velocities of motion the
Table 2
Input data for numerical simulations

a ðm2 s�1Þ 4:23� 10�6

q ðW m�2Þ 5:89� 107

tc ðsÞ 1:522� 10�3

tp ðsÞ 1:272� 10�3

ts ðsÞ 0.0
vd ðm s�1Þ 0.53
a ðJ m�2 K�1s�1Þ 5:207� 104

as ðJ m�2 K�1 s�1Þ 27:29� 104

d ðmÞ 2:663� 10�3

k ðW m�1 K�1Þ 13

Table 3
Summary of cases

vd ðm s�1Þ q ðW m�2Þ
j 0.1 1:1113� 107

r 0.3 3:3340� 107

� 0.53 5:8900� 107

N 0.7 7:7792� 107

Values of q ¼ k � vd for different values of vd . k ¼ 5:89� 107=0:53. The
symbols are used in the figures.
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cyclic regime is reached after a small fraction of time
while for values of vd close to zero the cyclic regime is
attained more slowly and the temperature levels decrease
considerably.

In Fig. 5 it is pointed out that the maximum values of
the workpiece surface (y ¼ 0) temperature are achieved
near x ¼ 0 for a t in the cyclic regime. The conduction in
the direction of the workpiece motion ðxÞ lacks importance
and consequently the heating of the workpiece surface in
the opposite sense of the workpiece motion is almost
imperceptible, with the exception of where the maximum
temperature is reached. In the four cases, the maximum
of T ð0Þ is not exactly attained at x ¼ 0 (Fig. 6), but very
close to it, depending on whether there is contact with
the wheel or not. When there is contact, this maximum is
located still in the grinding zone, being clearly a conductive
effect. In the other case the maximum is displaced physi-
cally out of this zone. In both cases this maximum is very
close to zero.

The evolution of the difference between T ð0Þ given by (7)
and T ð1Þ given by (6) according to the velocity vd of the
workpiece motion at point ðx; yÞ ¼ ð0; 0Þ is shown in
Fig. 7. It can be observed that the cooling effect saturates
after some time. The saturation time decreases with
increasing velocity vd . In Fig. 8 the same effect can be
observed, where now the cooling percentage ðT ð0Þ�
T ð1ÞÞ=T ð0Þ is plotted; mean values are also indicated by
empty symbols.

In Fig. 9 the same effect is studied now from a spatial
point of view. It is observed that the cooling effect pro-
duced by the fluid, and by the non contacts, increases to
a maximum located to the right of x ¼ 0, that is, once
the workpiece is no longer in contact with the wheel but
still very close to it.

The effect that the application of grinding fluid has over
the temperature reached by the workpiece at point
ðx; yÞ ¼ ð0; 0Þ is studied in Fig. 10a and b. Both figures
show that from ts ¼ 2e� 4 s the effect of the length tp of
the time interval during which direct interaction between
the wheel and the workpiece surface occurs within the
nth cycle is negligible. Therefore, increasing the value of
tp does not make the grinding process more efficient.

Particularly, Fig. 10a shows how the paths of the
difference of temperature T ð0Þ � T ð1Þ concentrate forming
a curve-sided cone. From approximately ts ¼ 2e� 4 s the
single vertex is reached.

5. Conclusions

In this paper, a numerical algorithm for simulating the
evolution of the workpiece temperature during an intermit-
tent grinding process has been designed. The algorithm is
based on the explicit solution obtained in a previous paper
[3] for a parabolic boundary-value problem in a half-plane.
This solution provided a model to approximate the evolu-
tion of the temperature field in a metal piece, when
grounded intermittently. An implementation of the algo-
rithm in MATLAB can simulate thousands of different
configurations in just a few minutes. This makes it possible
to determine, for instance, the effect of increasing the
amount of refrigerant used. Finally, results for a titanium
alloy VT20 real case are presented.
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